Instructions for Use

Vivaspin® 6 and 20 for *in vitro* diagnostics

Vivaspin® 6 and 20 devices for in vitro diagnostic (IVD) use

2473640-000-02

For German, French, Italian, and Spanish manuals, please go to www.sartorius.com/Vivaspin6

Contents

1	Vivaspin® 6 and 20 – Introduction	4
	1.1 Storage Conditions Shelf Life	4
	1.2 Introduction.	
	1.3 Centrifugal Operation	
	1.4 Pressurised Operation	5
2	Equipment Required	6
	2.1 Rotor Compatibility	
3	Operation	8
•	3.1 In Centrifuge VS6 & 20.	
	3.2 Removing the Vivaspin® 6 body from the filtrate tube	
	3.3 Using Gas Pressure (Vivaspin® 20 only)	10
	3.4 Desalting Buffer Exchange	
	3.5 Desalting with Vivaspin® 20	
	3.6 Vivaspin® 20 Diafiltration	12
4	Technical Specifications	13
5	Usage Tips	15
	5.1 Flow Rate	
	5.2 Pre-rinsing	
	5.3 Sanitization of Polyethersulfone Membranes	
	5.4 Chemical Compatibility	15
6	Performance Characteristics	16
7	Chemical Compatibility	17
8	Ordering Information	20
9	In Vitro Diagnostic Product Labeling	21

1 Vivaspin[®] 6 and 20 – Introduction

1.1 Storage Conditions | Shelf Life

Vivaspin® 6 and 20 ultrafiltration spin columns should be stored at 15-30°C. The devices should be used before the expiry date printed on the box.

1.2 Introduction

Vivaspin® concentrators are disposable ultrafiltration devices for the concentration and | or purification of biological samples. Vivaspin® 6 is suitable for sample volumes of 2 – 6 ml and the Vivaspin® 20 can handle samples up to 20 ml. Both products feature twin vertical membranes for unparalleled speed.

Vivaspin® 20 purification alternatives include a diafiltration cup that allows one step removal of salts and other contaminating micromolecules, and a gas pressure mode for increased flexibility and even faster processing.

The innovative design (US Patent No. 5,647,990, second patent pending), ease of use, speed and exceptional concentrate recoveries are the main features of the concentrators.

The Vivaspin® 6 and 20 for IVD use feature a molecular weight cutoff (MWCO) of 10K:

Vivaspin® 6 & 20 10K device: 10,000 MWCO

Vivaspin® 6 & 20 10K filter devices are for *in vitro* diagnostic use and can be used to concentrate serum, urine, cerebrospinal fluid, and other body fluids prior to analysis.

1.3 Centrifugal Operation

Vivaspin® concentrators can be used in swing bucket rotors accepting standard conical bottom tubes. In a single spin, solutions can be concentrated in excess of 100 ×. Samples are typically concentrated in 10 to 30 minutes with macromolecular recoveries in excess of 95%.

The longitudinal membrane orientation and thin channel concentration chamber, provide optimum cross flow conditions even for particle laden solutions; the centrifugal force pulling particles and solids away from the membrane to the bottom of the device. Macromolecules collect in an impermeable concentrate pocket integrally moulded below the membrane surface, thereby eliminating the risk of filtration to dryness.

1.4 Pressurised Operation

When an appropriate centrifuge is unavailable, or for single sample processing, Vivaspin® 20 can be filled with up to 15 ml and pressurised for bench top concentration. For even faster processing, pressure can be combined with centrifugal force. "Pressure-Fugation" is particularly suitable for viscous samples such as serum, or when processing at low temperatures, and generaly when minimum process time is essential.

2 Equipment Required

A. For use with centrifuge

- 1. Centrifuge with swing bucket rotor.
- 2. Pasteur or fixed volume pipettes for sample delivery and removal.

Device	Carrier Required
Vivaspin® 6	15 ml 17 mm Ø
Vivaspin® 20	50 ml 30 mm Ø

B. For use with Pressure (Vivaspin® 20 only)

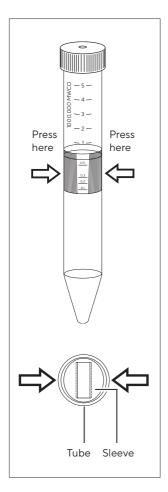
- 1. Vivaspin® 20 Pressure Head (Product No. VCA200).
- 2. Charge Valve for Pressure Head (Product No. VCA005).
- 3. Air Pressure Controller (Product No. VCA002) or equivalent pressure regulator.

For use with Pressure and Centrifuge

1. All of the equipment shown in A. and B. above.

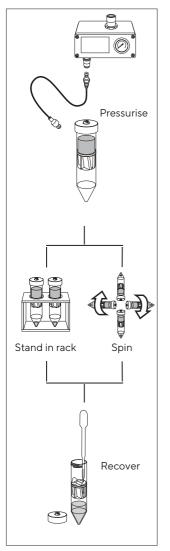
Equipment Required	Vivaspin [®] 6	Vivaspin [®] 20	
Centrifuge			
Rotor type	Swing bucket	Swing bucket	
Rotor cavity	To fit 15 ml (17 mm) conical bottom tubes	To fit 50 ml (30 mm) conical bottom tubes	

Optional pressure accessories for Vivaspin® 20					
Air pressure controller with pressure gauge, e over-pressure safety vaconncetor and 1 m externeumatic tubing) with female connectors and inlet tubing	gulator, alve, female ension line (4 mm n male and	Prod. no. VCA002			
Charge valve		Prod. no. VCA005			
VS20 pressure head		Prod. no. VCA200			
Concentrate recovery					
Pipette type	Fixed or variable volume	Fixed or variable volume			
Recommended tip	Thin gel loader type	Thin gel loader type			


2.1 Rotor Compatibility

Please note: Vivaspin® 20 (30 mm \times 116 mm) is designed to fit into rotors that can accommodate Falcon 50 ml conical bottom tubes, e.g. Beckman Allegra 25R with TS-5.1-500 swing-out rotor with BUC 5 buckets and 368327 adaptors; Heraeus Multifuge 3 S-R with (Heraeus/Sorvall) 75006445 swing out rotor with 75006441 buckets and adaptors for Falcon 50 ml conical bottom tubes.

3 Operation


3.1 In Centrifuge VS6 & 20

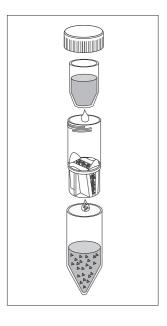
- Select the most appropriate membrane cut-off for your sample. For maximum recovery select a MWCO at least 50% smaller than the molecular size of the species of interest.
- 2. Fill concentrator with up to maximum volumes shown in table 1. (Ensure screw closure is fully seated.)
- 3. Insert assembled concentrator into centrifuge.
- 4. Centrifuge at speeds recommended in table 2, taking care not to exceed the maximum g force indicated by membrane type and MWCO.
- 5. Once the desired concentration is achieved, (see table 3a and 3b for guide to concentration times), remove assembly and recover sample from the bottom of the concentrate pocket with a pipette.

3.2 Removing the Vivaspin® 6 body from the filtrate tube

The sleeve (seen from the end) is oval in cross section. The tube is round in cross section to give a tight fit to the sleeve. To release the tube from the sleeve, you must pinch the tube – to press it into an oval shape – before removing it with a twisting action.

3.3 Using Gas Pressure (Vivaspin® 20 only)

- 1. Select appropriate membrane as above.
- 2. Fill concentrator (maximum 15 ml).
- 3. Fit Pressure Head (Prod. No. VCA200), and hand tighten to ensure an air tight seal.
- 4. Using Air Pressure Controller (APC), exchange the Female Coupling for the Charge Valve (Prod. No. VCA005), on the APC Extension line. Pressurise by pressing the Charge Valve into the inlet valve of the pressure head to achieve an air tight seal.
- Either stand assembly in a rack and allow to concentrate, Or – for faster processing, insert assembled, pressurised concentrator into centrifuge and spin (see table 1 for spin speeds).
- 6. Once the desired concentration has been reached, (see table 3b for guide to concentration times), remove assembly and de-pressurise by unscrewing cap.
- 7. Extract concentrate using a pasteur or fixed volume pipette.


3.4 Desalting | Buffer Exchange

- 1. Concentrate sample to desired level.
- 2. Empty filtrate container.
- 3. Refill concentrator with an appropriate solvent.
- 4. Concentrate the sample again and repeat the process until the concentration of contaminating microsolute is sufficiently reduced. Typically, 3 wash cycles will remove 99% of initial salt content.

3.5 Desalting with Vivaspin® 20

Salts and contaminants can be removed in a single step when using the special diafiltration cup available with the Vivaspin® 20. This is due to the constant washing action (constant volume dialfiltration), of the buffer solution in the cup as it replaces solvent and salts passing through the ultrafiltration membrane.

- 1. Place 2 ml sample solution in the concentrator. (Larger volumes can be desalted by first concentrating down to 2 ml and decanting filtrate).
- 2. Empty filtrate container.
- 3. Insert diafiltration cup into concentrator and fill with 10 ml deionised water or buffer solution. Re-fit blue lid over the diafiltration cup.
- 4. Repeat concentration process; over 98% of salts will be removed in this step.
- 5. Remove diafiltration cup and recover concentrated and purified sample.

3.6 Vivaspin® 20 Diafiltration

- Diafiltration cup is filled with buffer solution (Product No: VSA005).
- During concentration, solvent in sample is continuously replaced by fresh buffer solution.
- Salts and contaminants are progressively cleared through membrane and into filtrate vessel

4 Technical Specifications

Table 1: Technical Specifications

	Vivaspin® 6	Vivaspin® 20
Concentrator capacity		
Swing bucket rotor	6 ml	20 ml
With pressure head	-	15 ml
Dimensions		
Total Length	122 mm -	116 mm 125 mm with pressure head
Width	17 mm	30 mm
Active membrane area	2.5 cm²	6.0 cm ²
Hold up volume of membrane	<10 μΙ	<20 μΙ
Dead stop volume*	30 μΙ	50 μΙ
Materials of construction		
Concentrator body	Polycarbonate	Polycarbonate
Filtrate vessel	Polycarbonate	Polycarbonate
Concentrator cap	Polypropylene	Polypropylene
Pressure head	-	Acetal/aluminium
Membrane	Polyethersulfone	Polyethersulfone

^{*} Dead stop volume as designed in moulding tool. This volume may vary depending on sample, sample concentration, operation temperature and centrifuge rotor.

Technical Specifications

Table 2: Recommended Spin Speed (xg)

Vivaspin® 6	Swing Bucket
Membrane	max
10,000 MWCO PES	4,000

Vivaspin® 20	Centrifuge	Pressure-Fuge	
Rotor	Swing Bucket	Swing Bucket (5 bar max)	
Membrane	max	max	
10,000 MWCO PES	4,000	3,000	

5 Usage Tips

5.1 Flow Rate

Filtration rate is affected by several parameters, including MWCO, porosity, sample concentration, viscosity, centrifugal force and temperature. Expect significantly longer spin times for starting solutions with over 5% solids. When operating at 4°C. flow rates are approximately 1.5 times slower than at 25°C. Viscous solutions such as 50% glycerine will take up to 5 times longer to concentrate than samples in a predominantly buffer solution.

5.2 Pre-rinsing

Membranes fitted to Vivaspin® concentrators contain trace amounts of Glycerine and Sodium azide. Should these interfere with analysis they can be removed by rinsing fill volume of buffer solution or deionised water through the concentrator. Decant filtrate and concentrate before processing sample solution. If you do not want to use the pre-rinsed device immediately, store it in the refrigerator with buffer or water covering the membrane surface. Please do not allow the membrane to dry out.

5.3 Sanitization of Polyethersulfone Membranes

Polyethersulfone membranes should not be autoclaved as high temperatures will substantially increase membrane MWCO. To sanitize, use a 70% ethanol solution or sanitizing gas mixture.

5.4 Chemical Compatibility

Vivaspin® concentrators are designed for use with biological fluids and aqueous solutions. For chemical compatibility details, refer to table 4.

6 Performance Characteristics

Table 3a: Typical Performance Characteristics Vivaspin® 6

		o concentrate up to 30x [min.] at 20°C and recovery %	
Rotor	Swing k	bucket	
Start volume	6 ml		
	Min.	Rec.	
BSA 1.0 mg/ml (66,000 MW)			
10,000 MWCO PES	13	98%	

Table 3b: Typical Performance Characteristics Vivaspin® 20

	Time to concentrate up to 30x [min.] at 20°C a solute recovery %)°C and		
Mode	Centri	Centrifuge		Bench top		Press-fuge	
Rotor	Swing bucket Pressure		Swing bucket				
Start volume	20 ml		10 ml		10 ml	10 ml	
	Min.	Rec.	Min.	Rec.	Min.	Rec.	
BSA 1.0 mg/ml (66,000 MW)							
10,000 MWCO PES	16	98%	32	97%	8	97%	

7 Chemical Compatibility

Table 4: Chemical Compatibility (2 hr contact time)

Solutions	PES
Compatible pH range	pH 1-9
Acetic Acid (25.0%)	OK
Acetone (10.0%)	NO
Acetonitrile (10.0%)	NO
Ammonium Hydroxide (5.0%)	?
Ammonium Sulphate (saturated)	OK
Benzene (100%)	NO
n-Butanol (70%)	OK
Chloroform (1.0%)	NO
Dimethyl Formamide (10.0%)	?
Dimethyl Sulfoxide (5.0%)	OK
Ethanol (70.0%)	OK
Ethyl Acetate (100%)	NO
Formaldehyde (30%)	OK
Formic Acid (5.0%)	OK
Glycerine (70%)	OK
Guanidine HCI (6 M)	OK
Hydrocarbons, aromatic	NO
Hydrocarbons, chlorinated	NO

Solutions	PES
Compatible pH range	pH 1-9
Hydrochloric Acid (1 M)	OK
Imidazole (500 mM)	OK
Isopropanol (70%)	OK
Lactic Acid (5.0%)	OK
Mercaptoethanol (10 mM)	OK
Methanol (60%)	?
Nitric Acid (10.0%)	OK
Phenol (1.0%)	?
Phosphate Buffer (1.0 M)	OK
Polyethylene Glycol (10%)	OK
Pyridine (100%)	?
Sodium Carbonate (20%)	?
Sodium Deoxycholate (5.0%)	OK
Sodium Dodecylsulfate (0.1 M)	OK
Sodium Hydroxide	NO
Sodium Hypochlorite (200 ppm)	?
Sodium Nitrate (1.0%)	ОК
Sulfamic Acid (5.0%)	OK
Tetrahydrofuran (5.0%)	NO

Solutions	PES	
Compatible pH range	pH 1-9	
Toluene (1.0%)	NO	
Trifluoroacetic Acid (10%)	OK	
Tween®* 20 (0.1%)	OK	
Triton®** X-100 (0.1%)	OK	
Urea (8 M)	OK	
Urine (pH 4.5 - 8.0)	OK	

OK = Acceptable ? = Questionable NO = Not recommended

^{*}Tween® is a registered trademark of ICI Americas Inc.

^{**} Triton® is a registered trademark of Union Carbide Corp.

8 Ordering Information

Vivaspin® 6 for <i>in vitro</i> diagnostics (Polyethersulfone)	Qty per box	Prod. No.
10,000 MWCO	25	VS0601IVD
10,000 MWCO	100	VS0602IVD

Vivaspin® 20 for <i>in vitro</i> diagnostics (Polyethersulfone)	Qty per box	Prod. no.
10,000 MWCO	12	VS2001IVD
10,000 MWCO	48	VS2002IVD

Vivaspin® 20 accessories	Qty per box	Prod. no.
Air pressure controller (APC)	1	VCA002
Charge valve for pressure head	1	VCA005
Diafiltration cups	12	VSA005
Female connector	1	VCA010
Male connector	1	VCA011
4 mm OD pneumatic tube (3 m)	1	VCA012
Vivaspin® 20 pressure head	1	VCA200

9 In Vitro Diagnostic Product Labeling

The following table defines the symbols found on Vivaspin® 6 & 20 device labels.

Symbol	Definition
IVD	In vitro diagnostic medical device
REF	Catalogue number
②	Do not reuse
Σ	Use by
LOT	Batch code
\mathbb{M}	Date of manufacture
	Manufacturer
1	Temperature limitation
MON	Non-sterile product

Sartorius Stedim Lab Ltd. Sperry Way, Stonehouse Park GL10 3UT Stonehouse, Gloucestershire, UK

Phone: +44 1453 821972 www.sartorius.com

The information and figures contained in these instructions correspond to the version date specified below.

Sartorius reserves the right to make changes to the technology, features, specifications and design of the equipment without notice.

Masculine or feminine forms are used to facilitate legibility in these instructions and always simultaneously denote the other gender as well.

Copyright notice:

This instruction manual, including all of its components, is protected by copyright.

Any use beyond the limits of the copyright law is not permitted without our approval.

This applies in particular to reprinting, translation and editing irrespective of the type of media used.

Last updated: 05 | 2023

© 2023 Sartorius Stedim Lab Ltd. Sperry Way, Stonehouse Park GL10 3UT Stonehouse, Gloucestershire, UK

AM | DIR No.: 2473640-000-02